## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## μ<sub>4</sub>-Orthothiocarbonato-tetrakis[tricarbonyliron(I)](2 *F*e—*F*e)

# Yao-Cheng Shi,<sup>a</sup>\* Huan-Ren Cheng,<sup>a</sup> Li-Min Yuan<sup>b</sup> and Qian-Kun Li<sup>c</sup>

<sup>a</sup>College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, <sup>b</sup>Testing Center, Yangzhou University, Yangzhou 225009, People's Republic of China, and <sup>c</sup>Hubei Research Institue of Geophysics Survey and Design, Wuhan 430056, People's Republic of China Correspondence e-mail: ycshi@yzu.edu.cn

Received 28 September 2011; accepted 11 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (O–C) = 0.004 Å; R factor = 0.026; wR factor = 0.070; data-to-parameter ratio = 17.2.

The fused bis-butterfly-shaped title compound,  $[Fe_4(CS_4)-(CO)_{12}]$ , possesses an orthothiocarbonate  $(CS_4^{4-})$  ligand that acts as a bridge between two  $Fe_2(CO)_6$  units. A short intramolecular  $S \cdots S$  contact [2.6984 (8) and 2.6977 (8) Å] occurs in each  $S_2Fe_2(CO)_6$  fragment.

#### **Related literature**

For general background to related complexes, see: Mathur *et al.* (2009). For uses of  $R_3$ P/CS<sub>2</sub> in coordination chemistry and organometallic chemistry, see: Galindo *et al.* (1999). For the synthesis of butterfly S<sub>2</sub>Fe<sub>2</sub>(CO)<sub>6</sub> complexes, see: Song (2005). For related structures, see: Shaver *et al.* (1979); Ortega-Alfaro *et al.* (2004).



#### **Experimental**

Crystal data

 $\begin{array}{l} [\mathrm{Fe}_4(\mathrm{CS}_4)(\mathrm{CO})_{12}] \\ M_r = 699.81 \\ \mathrm{Triclinic}, P\overline{1} \\ a = 9.0875 \ (9) \ \text{\AA} \\ b = 10.9002 \ (11) \ \text{\AA} \\ c = 12.6448 \ (13) \ \text{\AA} \\ a = 101.8859 \ (12)^\circ \\ \beta = 92.4964 \ (12)^\circ \end{array}$ 

| $\gamma = 110.0857 \ (12)^{\circ}$<br>$V = 1142.2 \ (2) \ Å^3$ |    |
|----------------------------------------------------------------|----|
| Z = 2                                                          |    |
| Mo $K\alpha$ radiation                                         |    |
| $\mu = 2.91 \text{ mm}^{-1}$                                   |    |
| T = 296  K                                                     |    |
| $0.15 \times 0.12 \times 0.11$                                 | mm |
|                                                                |    |

#### Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004)  $T_{\rm min} = 0.658, T_{\rm max} = 0.721$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.026$ | 298 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.070$               | 6 restraints                                               |
| S = 1.04                        | $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 5128 reflections                | $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ |

Table 1

Selected geometric parameters (Å, °).

| C13-S1      | 1.827 (2)   | Fe2-S1     | 2.2723 (6) |
|-------------|-------------|------------|------------|
| C13-S2      | 1.8300 (19) | Fe2-S2     | 2.2685 (7) |
| C13-S3      | 1.830 (2)   | Fe3-S3     | 2.2676 (6) |
| C13-S4      | 1.837 (2)   | Fe3-S4     | 2.2680 (6) |
| Fe1-S1      | 2.2730 (6)  | Fe3-Fe4    | 2.5007 (5) |
| Fe1-S2      | 2.2688 (7)  | Fe4-S3     | 2.2712 (7) |
| Fe1–Fe2     | 2.4949 (5)  | Fe4-S4     | 2.2626 (6) |
|             |             |            |            |
| \$1-C13-\$2 | 95.10 (10)  | \$3-C13-S4 | 94.73 (9)  |
|             |             |            |            |

10006 measured reflections

 $R_{\rm int} = 0.025$ 

5128 independent reflections

4237 reflections with  $I > 2\sigma(I)$ 

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *WinGX* (Farrugia, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors thank the Natural Science Foundation of China (No. 20572091) and the Natural Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5239).

#### References

Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Galindo, A., Miguel, D. & Perez, J. (1999). Coord. Chem. Rev. 193–195, 643–690.
- Mathur, P., Boodida, S., Ji, R. S. & Mobin, S. M. (2009). J. Organomet. Chem. 694, 3043–3045.
- Ortega-Alfaro, M. C., Hernández, N., Cerna, I., López-Cortés, J. G., Gómez, E., Toscano, R. A. & Alvarez-Toledano, C. (2004). J. Organomet. Chem. 689, 885–893.
- Shaver, A., Fitzpatrick, P. J., Steliou, K. & Butler, I. S. (1979). J. Am. Chem. Soc. 101, 1313–1315.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, L.-C. (2005). Acc. Chem. Res. 38, 21-28.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, m1534 [doi:10.1107/S1600536811041936]

### $\mu_4$ -Orthothiocarbonato-tetrakis[tricarbonyliron(I)](2 Fe-Fe)

### Y.-C. Shi, H.-R. Cheng, L.-M. Yuan and Q.-K. Li

#### Comment

The activation and cleavage of selected bonds of small molecules by transition metal complexes is one of the challenging subjects of recent researches.  $CS_2$  has been shown to undergo a variety of reactions with transition metals, including insertion and disproportionation, and there is a growing interest in the activation of  $CS_2$  from catalytic and biological points of view. The cleavage of the C—S bonds is often observed in various transition metal complexes in which chemistry has been explored for the hydrosulfurization of fossil products. In these complexes, the S<sup>2-</sup> ion derived from the C—S bond scission functions as a bridging ligand to link metal ions and metal cluster fragments and is generally of use in various cluster growth processes (Mathur *et al.*, 2009).

Interestingly, the reaction of Et<sub>3</sub>P/CS<sub>2</sub> and Fe<sub>3</sub>(CO)<sub>12</sub> in THF under inert atmosphere at room temperature leads to the formation of a novel complex (Scheme 1). The molecular structure of the novel complex (Fig. 1) consists of two butterfly Fe<sub>2</sub>(CO)<sub>6</sub> units connected by a bridging CS<sub>4</sub> ligand in axial C—S bond fashions similar to the related complex Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -S)<sub>2</sub>CH<sub>2</sub> (Shaver *et al.*, 1979). The Fe—Fe bond lengths are 2.4949 (5) and 2.5007 (5) Å and close to 2.485 (1) Å in Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -S)<sub>2</sub>CH<sub>2</sub>, but slightly shorter than 2.511 (1) Å in the complex Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -SCH<sub>3</sub>)<sub>2</sub> (Table 1) (Ortega-Alfaro *et al.*, 2004), the corresponding C—S bond lengths are 1.827 (2), 1.830 (2) and 1.830 (2), 1.837 (2)°, respectively, which are longer than those in the complex Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -SCH<sub>3</sub>)<sub>2</sub>. For each S<sub>2</sub>Fe<sub>2</sub>(CO)<sub>6</sub> butterfly core, the S—C—S bond angle is 95.10 (10) and 94.73 (9)° and close to 94.55 (3)° in Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -S)<sub>2</sub>CH<sub>2</sub> (Table 1). As compared with 2.744 (1)–2.773 (1) Å in Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -SCH<sub>3</sub>)<sub>2</sub>, the S…S distance (2.6984 (8) and 2.6977 (8) Å) indicates an intramolecular short contact in each S<sub>2</sub>Fe<sub>2</sub>(CO)<sub>6</sub> butterfly core.

#### Experimental

A THF solution of  $Et_3P/CS_2$  (1 mmol) and  $Fe_3(CO)_{12}$  (1 mmol) under inert atmosphere is stirred for 24 h at room temperature. After removal of the solvent, the mixture was purified by chromatography on silica gel with dichloromethane-petroleum ether (v/v, 1:3) as eluant to give the red-orange solid. Single crystals were grown from ether solution of the title compound.

**Figures** 



Fig. 1. The molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

#### µ4-Orthothiocarbonato-tetrakis[tricarbonyliron(l)](2 Fe-Fe)

#### Crystal data

| $[Fe_4(CS_4)(CO)_{12}]$            | Z = 2                                                 |
|------------------------------------|-------------------------------------------------------|
| $M_r = 699.81$                     | F(000) = 684                                          |
| Triclinic, PT                      | $D_{\rm x} = 2.035 {\rm ~Mg~m}^{-3}$                  |
| a = 9.0875 (9)  Å                  | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 10.9002 (11)  Å                | Cell parameters from 4237 reflections                 |
| c = 12.6448 (13)  Å                | $\theta = 1.7 - 27.5^{\circ}$                         |
| $\alpha = 101.8859 \ (12)^{\circ}$ | $\mu = 2.91 \text{ mm}^{-1}$                          |
| $\beta = 92.4964 \ (12)^{\circ}$   | T = 296  K                                            |
| $\gamma = 110.0857 \ (12)^{\circ}$ | Prism, red                                            |
| V = 1142.2 (2) Å <sup>3</sup>      | $0.15\times0.12\times0.11~mm$                         |
|                                    |                                                       |

#### Data collection

| Bruker SMART APEX CCD<br>diffractometer                                 | 5128 independent reflections                                              |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                                | 4237 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                                | $R_{\rm int} = 0.025$                                                     |
| $\omega$ and $\phi$ scans                                               | $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 2004) | $h = -11 \rightarrow 11$                                                  |
| $T_{\min} = 0.658, T_{\max} = 0.721$                                    | $k = -14 \rightarrow 14$                                                  |
| 10006 measured reflections                                              | $l = -16 \rightarrow 16$                                                  |

#### Refinement

| Refinement on $F^2$             | 6 restraints                                                                              |
|---------------------------------|-------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Primary atom site location: structure-invariant direct methods                            |
| $R[F^2 > 2\sigma(F^2)] = 0.026$ | Secondary atom site location: difference Fourier map                                      |
| $wR(F^2) = 0.070$               | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0332P)^{2}]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| <i>S</i> = 1.04                 | $(\Delta/\sigma)_{\rm max} < 0.001$                                                       |
| 5128 reflections                | $\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$                                       |
| 298 parameters                  | $\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$                                    |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|     | x           | у           | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|-------------|-------------|--------------|-------------------------------|
| C1  | 0.6561 (3)  | 0.7935 (2)  | 0.77984 (18) | 0.0440 (5)                    |
| C2  | 0.8526 (3)  | 0.8863 (3)  | 0.6347 (2)   | 0.0506 (6)                    |
| C3  | 0.9578 (3)  | 0.9654 (3)  | 0.8400 (2)   | 0.0495 (6)                    |
| C4  | 1.1219 (3)  | 0.7705 (3)  | 0.5832 (2)   | 0.0576 (7)                    |
| C5  | 1.2260 (3)  | 0.8567 (3)  | 0.7869 (2)   | 0.0499 (6)                    |
| C6  | 1.1533 (3)  | 0.5863 (3)  | 0.6883 (2)   | 0.0520 (6)                    |
| C7  | 0.7715 (3)  | 0.4656 (3)  | 1.0044 (2)   | 0.0518 (6)                    |
| C8  | 0.6869 (3)  | 0.2015 (3)  | 0.9062 (2)   | 0.0571 (7)                    |
| С9  | 0.4644 (3)  | 0.2955 (2)  | 0.94124 (17) | 0.0461 (6)                    |
| C10 | 0.5449 (3)  | 0.1072 (3)  | 0.6532 (2)   | 0.0533 (6)                    |
| C11 | 0.3306 (3)  | 0.2117 (3)  | 0.69401 (19) | 0.0538 (6)                    |
| C12 | 0.5320 (3)  | 0.3000 (2)  | 0.54991 (19) | 0.0461 (5)                    |
| C13 | 0.7801 (2)  | 0.5349 (2)  | 0.75626 (15) | 0.0326 (4)                    |
| Fe1 | 0.85275 (4) | 0.80727 (3) | 0.74597 (2)  | 0.03532 (9)                   |
| Fe2 | 1.06610 (4) | 0.71578 (3) | 0.70503 (2)  | 0.03858 (9)                   |
| Fe3 | 0.64765 (4) | 0.34558 (3) | 0.88425 (2)  | 0.03604 (9)                   |
| Fe4 | 0.54035 (4) | 0.27424 (3) | 0.68685 (2)  | 0.03649 (9)                   |
| 01  | 0.5347 (2)  | 0.7883 (2)  | 0.80095 (16) | 0.0652 (5)                    |
| 02  | 0.8523 (3)  | 0.9343 (2)  | 0.56303 (17) | 0.0808 (7)                    |
| O3  | 1.0252 (3)  | 1.0659 (2)  | 0.89976 (17) | 0.0801 (6)                    |
| O4  | 1.1562 (3)  | 0.8060 (3)  | 0.50561 (17) | 0.0906 (8)                    |
| 05  | 1.3234 (2)  | 0.9495 (2)  | 0.83931 (18) | 0.0764 (6)                    |
| O6  | 1.2101 (3)  | 0.5078 (2)  | 0.67522 (19) | 0.0802 (6)                    |
| 07  | 0.8437 (3)  | 0.5364 (2)  | 1.08183 (16) | 0.0849 (7)                    |
| 08  | 0.7108 (3)  | 0.1096 (2)  | 0.9194 (2)   | 0.0923 (7)                    |
| O9  | 0.3472 (2)  | 0.2622 (2)  | 0.97500 (15) | 0.0716 (6)                    |
| O10 | 0.5481 (3)  | 0.0019 (2)  | 0.63331 (18) | 0.0840 (7)                    |
| 011 | 0.1982 (3)  | 0.1726 (3)  | 0.69931 (18) | 0.0901 (7)                    |
| 012 | 0.5245 (2)  | 0.3122 (2)  | 0.46352 (14) | 0.0717 (6)                    |
| S1  | 0.92568 (6) | 0.68363 (5) | 0.84778 (4)  | 0.03454 (12)                  |
| S2  | 0.80928 (7) | 0.60300 (6) | 0.63482 (4)  | 0.03789 (13)                  |
| S3  | 0.80213 (6) | 0.37272 (5) | 0.74843 (4)  | 0.03674 (12)                  |
| S4  | 0.57807 (6) | 0.47963 (5) | 0.79267 (4)  | 0.03420 (12)                  |
|     |             |             |              |                               |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|-------------|-------------|-------------|-------------|-------------|-------------|
| C1 | 0.0464 (14) | 0.0398 (13) | 0.0478 (12) | 0.0174 (11) | 0.0032 (10) | 0.0116 (10) |
| C2 | 0.0482 (15) | 0.0460 (14) | 0.0586 (14) | 0.0159 (12) | 0.0062 (12) | 0.0168 (12) |

# supplementary materials

| C3  | 0.0446 (14)  | 0.0430 (14)  | 0.0568 (14)  | 0.0113 (12)  | 0.0098 (11)  | 0.0103 (12)  |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| C4  | 0.0577 (17)  | 0.0620 (17)  | 0.0653 (17)  | 0.0292 (14)  | 0.0259 (14)  | 0.0241 (14)  |
| C5  | 0.0368 (14)  | 0.0484 (15)  | 0.0656 (16)  | 0.0140 (12)  | 0.0142 (12)  | 0.0163 (13)  |
| C6  | 0.0452 (15)  | 0.0523 (15)  | 0.0623 (15)  | 0.0179 (12)  | 0.0168 (12)  | 0.0189 (13)  |
| C7  | 0.0536 (16)  | 0.0528 (15)  | 0.0469 (13)  | 0.0150 (13)  | 0.0004 (11)  | 0.0155 (12)  |
| C8  | 0.0601 (17)  | 0.0545 (16)  | 0.0633 (16)  | 0.0241 (14)  | 0.0094 (13)  | 0.0218 (13)  |
| C9  | 0.0510 (15)  | 0.0453 (14)  | 0.0360 (11)  | 0.0114 (12)  | 0.0063 (10)  | 0.0065 (10)  |
| C10 | 0.0601 (17)  | 0.0402 (14)  | 0.0502 (14)  | 0.0095 (12)  | 0.0063 (12)  | 0.0057 (11)  |
| C11 | 0.0481 (16)  | 0.0526 (16)  | 0.0440 (13)  | 0.0020 (13)  | 0.0040 (11)  | 0.0040 (11)  |
| C12 | 0.0436 (14)  | 0.0401 (13)  | 0.0434 (13)  | 0.0046 (11)  | 0.0000 (10)  | 0.0049 (10)  |
| C13 | 0.0291 (11)  | 0.0319 (10)  | 0.0341 (10)  | 0.0089 (9)   | 0.0031 (8)   | 0.0057 (8)   |
| Fe1 | 0.03283 (18) | 0.03237 (17) | 0.03938 (17) | 0.00973 (13) | 0.00397 (13) | 0.00912 (13) |
| Fe2 | 0.03253 (18) | 0.03943 (18) | 0.04416 (18) | 0.01127 (14) | 0.01067 (13) | 0.01241 (14) |
| Fe3 | 0.03703 (18) | 0.03452 (17) | 0.03534 (16) | 0.01093 (14) | 0.00442 (13) | 0.00903 (13) |
| Fe4 | 0.03603 (18) | 0.03052 (17) | 0.03559 (16) | 0.00580 (13) | 0.00263 (13) | 0.00313 (13) |
| 01  | 0.0438 (11)  | 0.0676 (13)  | 0.0955 (14)  | 0.0303 (10)  | 0.0199 (10)  | 0.0237 (11)  |
| O2  | 0.0919 (17)  | 0.0883 (16)  | 0.0771 (13)  | 0.0311 (14)  | 0.0146 (12)  | 0.0530 (13)  |
| O3  | 0.0750 (15)  | 0.0484 (12)  | 0.0894 (15)  | 0.0052 (11)  | 0.0037 (12)  | -0.0119 (11) |
| O4  | 0.112 (2)    | 0.112 (2)    | 0.0796 (14)  | 0.0537 (16)  | 0.0579 (14)  | 0.0566 (15)  |
| O5  | 0.0456 (12)  | 0.0589 (13)  | 0.1025 (16)  | 0.0024 (10)  | 0.0007 (11)  | 0.0014 (12)  |
| O6  | 0.0805 (16)  | 0.0736 (15)  | 0.1125 (17)  | 0.0495 (13)  | 0.0371 (13)  | 0.0347 (13)  |
| O7  | 0.0857 (16)  | 0.0882 (16)  | 0.0530 (11)  | 0.0075 (13)  | -0.0226 (11) | 0.0045 (11)  |
| O8  | 0.1114 (19)  | 0.0722 (15)  | 0.1227 (19)  | 0.0545 (15)  | 0.0225 (15)  | 0.0475 (15)  |
| O9  | 0.0573 (13)  | 0.0795 (15)  | 0.0636 (12)  | 0.0077 (11)  | 0.0265 (10)  | 0.0115 (11)  |
| O10 | 0.1131 (19)  | 0.0391 (11)  | 0.0960 (16)  | 0.0283 (12)  | 0.0166 (14)  | 0.0056 (11)  |
| 011 | 0.0473 (13)  | 0.1058 (19)  | 0.0861 (15)  | -0.0053 (12) | 0.0126 (11)  | 0.0119 (14)  |
| O12 | 0.0788 (14)  | 0.0732 (14)  | 0.0428 (10)  | 0.0033 (11)  | -0.0061 (9)  | 0.0147 (9)   |
| S1  | 0.0314 (3)   | 0.0334 (3)   | 0.0332 (2)   | 0.0058 (2)   | 0.0010 (2)   | 0.0063 (2)   |
| S2  | 0.0398 (3)   | 0.0375 (3)   | 0.0317 (3)   | 0.0086 (2)   | 0.0031 (2)   | 0.0077 (2)   |
| S3  | 0.0338 (3)   | 0.0338 (3)   | 0.0430 (3)   | 0.0135 (2)   | 0.0070 (2)   | 0.0071 (2)   |
| S4  | 0.0298 (3)   | 0.0309 (3)   | 0.0400 (3)   | 0.0097 (2)   | 0.0045 (2)   | 0.0062 (2)   |

### Geometric parameters (Å, °)

| C1—O1  | 1.131 (3) | C10—Fe4 | 1.798 (3)   |
|--------|-----------|---------|-------------|
| C1—Fe1 | 1.819 (3) | C11—O11 | 1.140 (3)   |
| C2—O2  | 1.136 (3) | C11—Fe4 | 1.804 (3)   |
| C2—Fe1 | 1.795 (2) | C12—O12 | 1.129 (3)   |
| C3—O3  | 1.142 (3) | C12—Fe4 | 1.813 (2)   |
| C3—Fe1 | 1.796 (3) | C13—S1  | 1.827 (2)   |
| C4—O4  | 1.145 (3) | C13—S2  | 1.8300 (19) |
| C4—Fe2 | 1.795 (3) | C13—S3  | 1.830 (2)   |
| C5—O5  | 1.142 (3) | C13—S4  | 1.837 (2)   |
| C5—Fe2 | 1.795 (3) | Fe1—S1  | 2.2730 (6)  |
| C6—O6  | 1.130 (3) | Fe1—S2  | 2.2688 (7)  |
| C6—Fe2 | 1.824 (3) | Fe1—Fe2 | 2.4949 (5)  |
| С7—О7  | 1.127 (3) | Fe2—S1  | 2.2723 (6)  |
| C7—Fe3 | 1.818 (3) | Fe2—S2  | 2.2685 (7)  |
| C8—O8  | 1.138 (3) | Fe3—S3  | 2.2676 (6)  |
|        |           |         |             |

| C8—Fe3                           | 1.796 (3)   | Fe3—S4            | 2.2680 (6)  |
|----------------------------------|-------------|-------------------|-------------|
| С9—О9                            | 1.134 (3)   | Fe3—Fe4           | 2.5007 (5)  |
| C9—Fe3                           | 1.798 (3)   | Fe4—S3            | 2.2712 (7)  |
| C10—O10                          | 1.135 (3)   | Fe4—S4            | 2.2626 (6)  |
| S1…S2                            | 2.6984 (8)  | S3…S4             | 2.6977 (8)  |
| O1—C1—Fe1                        | 178.3 (2)   | C6—Fe2—Fe1        | 154.51 (8)  |
| O2—C2—Fe1                        | 178.8 (2)   | S2—Fe2—Fe1        | 56.649 (18) |
| O3—C3—Fe1                        | 179.6 (3)   | S1—Fe2—Fe1        | 56.723 (17) |
| O4—C4—Fe2                        | 179.2 (3)   | C8—Fe3—C9         | 91.66 (12)  |
| O5—C5—Fe2                        | 177.0 (2)   | C8—Fe3—C7         | 97.13 (12)  |
| O6—C6—Fe2                        | 177.6 (2)   | C9—Fe3—C7         | 98.48 (11)  |
| O7—C7—Fe3                        | 176.7 (2)   | C8—Fe3—S3         | 93.97 (9)   |
| O8—C8—Fe3                        | 179.5 (3)   | C9—Fe3—S3         | 155.51 (7)  |
| O9—C9—Fe3                        | 178.5 (2)   | C7—Fe3—S3         | 104.42 (8)  |
| O10-C10-Fe4                      | 179.2 (3)   | C8—Fe3—S4         | 158.63 (9)  |
| O11—C11—Fe4                      | 179.5 (3)   | C9—Fe3—S4         | 93.86 (8)   |
| O12-C12-Fe4                      | 178.0 (2)   | C7—Fe3—S4         | 102.43 (8)  |
| S1—C13—S3                        | 118.10 (10) | S3—Fe3—S4         | 72.99 (2)   |
| S1—C13—S2                        | 95.10 (10)  | C8—Fe3—Fe4        | 102.35 (9)  |
| S3—C13—S2                        | 117.13 (11) | C9—Fe3—Fe4        | 98.88 (7)   |
| \$1—C13—\$4                      | 116.95 (11) | C7—Fe3—Fe4        | 153.39 (8)  |
| \$3—C13—\$4                      | 94.73 (9)   | S3—Fe3—Fe4        | 56.635 (18) |
| \$2                              | 116 62 (10) | S4—Fe3—Fe4        | 56 394 (17) |
| C2—Fe1—C3                        | 92.20 (12)  | C10—Fe4—C11       | 92.11 (13)  |
| C2—Fe1—C1                        | 97.54 (11)  | C10—Fe4—C12       | 97.98 (11)  |
| C3—Fe1—C1                        | 96.81 (11)  | C11—Fe4—C12       | 97.54 (11)  |
| C2—Fe1—S2                        | 93.44 (9)   | C10—Fe4—S4        | 157.10 (8)  |
| C3—Fe1—S2                        | 158 89 (8)  | C11—Fe4—S4        | 93 60 (9)   |
| C1 - Fe1 - S2                    | 102.58 (8)  | C12—Fe4—S4        | 103 21 (8)  |
| C2—Fe1—S1                        | 156 74 (8)  | C10—Fe4—S3        | 94 03 (9)   |
| C3—Fe1—S1                        | 94 58 (8)   | C11—Fe4—S3        | 157 73 (8)  |
| C1—Fe1—S1                        | 103 69 (7)  | C12—Fe4—S3        | 102.76 (8)  |
| S2—Fe1—S1                        | 72.90(2)    | S4—Fe4—S3         | 73 03 (2)   |
| C2—Fe1—Fe2                       | 100.11 (8)  | C10—Fe4—Fe3       | 100.52 (8)  |
| C3—Fe1—Fe2                       | 102.33 (8)  | C11—Fe4—Fe3       | 101.33 (8)  |
| C1—Fe1—Fe2                       | 153.30 (7)  | C12—Fe4—Fe3       | 152.93 (8)  |
| \$2—Fe1—Fe2                      | 56 636 (18) | S4—Fe4—Fe3        | 56 600 (16) |
| S1—Fe1—Fe2                       | 56 695 (17) | S3—Fe4—Fe3        | 56 499 (16) |
| C5—Fe2—C4                        | 91 26 (13)  | C13—S1—Fe2        | 88.02.(6)   |
| $C_{5} = Fe_{2}^{2} = C_{6}^{2}$ | 100 64 (12) | C13—S1—Fe1        | 87.12 (6)   |
| $C4 - Fe^2 - C6$                 | 96 91 (11)  | Fe2—S1—Fe1        | 66 582 (18) |
| $C_{5} = Fe_{2}^{2} = S_{2}^{2}$ | 153 65 (8)  | $C13 - S2 - Fe^2$ | 88.06(7)    |
| $C4 = Fe^2 = S^2$                | 93 88 (9)   | C13—82—Fe1        | 87 17 (7)   |
| C6 - Fe2 - S2                    | 104 35 (9)  | Fe2—S2—Fe1        | 66 715 (19) |
| C5—Fe2—S1                        | 93 23 (8)   | C13—S3—Fe3        | 87 77 (7)   |
| C4—Fe2—S1                        | 157 61 (9)  | C13—S3—Fe4        | 87 52 (7)   |
| C6 - Fe2 - S1                    | 103 77 (8)  | Fe3—S3—Fe4        | 66 867 (19) |
| 82—Fe2—S1                        | 72.92.(2)   | C13—S4—Fe4        | 87 60 (7)   |
| ~ •= ••                          | ( _ )       |                   |             |

## supplementary materials

| C5—Fe2—Fe1 | 97.00 (8)  | C13—S4—Fe3 | 87.58 (6)   |
|------------|------------|------------|-------------|
| C4—Fe2—Fe1 | 100.96 (8) | Fe4—S4—Fe3 | 67.006 (19) |

Fig. 1

